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S.U.N.Y. Stony Brook - NASA Ames Research Center

Cooperative Agreement NCC 2-311

ABSTRACT

The general purpose of the work performed under this project was to investigate

various aspects of past or present chemistry in the atmospheres of the outer planets

and their satellites using laboratory simulations. Three areas of study were

investigated during the period of this co-operative agreement: 1) Organic chemistry

induced by kinetically 'hot' hydrogen atoms in the region of Jupiter's atmosphere

containing the ammonia cirrus clouds; 2) The conversion of NH 3 into N 2 by plasmas

associated with entry of meteors and other objects into the atmosphere of early Titan;

and 3) The synthesis of simple hydrocarbons and HCN by lightning in mixtures

containing N 2, CH 4 and NH 3 representing the atmospheres of Titan and the outer

planets. The results of the studies showed that: 1) Hot hydrogen atoms formed from

the photodissociation of NH 3 in the atmosphere of Jupiter could account for some, but

not most, of the chemistry that takes place in and just below the ammonia cirrus cloud

region; 2) The thermalization of hot (=3 eV) hydrogen atoms in atmospheres

predominated by molecular hydrogen is not as rapid as predicted by classical elastic

collision theory; 3) The net quantum loss of NH 3 in the presence of a 200 fold excess

of H2 is 0.02, much higher than was expected from the amount of H2 present, 4) The

conversion of NH 3 into N 2 in plasmas associated with infalling meteors is very efficient

and rapid, and could account for most of the N2 present on Titan today; 5) The yields

of C2H 2 and HCN from lightning induced chemistry in mixtures of CH 4 and N 2 is

consistent with quenched thermodynamic models of the discharge core but that the

yields of C2H 6, C2H 4, C3H 8 and other hydrocarbons are much higher than predicted

by the model; and 6) Photolysis induced by the ultraviolet light emitted by the gases in

the hot plasma may account for some, if not most, of the excess production of C2H 6

and the more complex hydrocarbons.



NCC 2-311 Final Report Page 2

Introduction

The fact that the outer planets possess extensive atmospheres has been known

for a long time. Galileo first observed the complexity of the atmosphere of Jupiter with

his homemade telescope in 1608. Since then more sophisticated and extensive

observations have been made confirming the complexity and diversity of the objects

(and their atmospheres) in the solar system. These observations, which still continue

to be made, were certainly demonstrated by the photographic images returned to us

by the Voyager spacecraft which flew past the outer planets (except Pluto) and their

satellites this past decade.

The first evidence that the outer planets possessed complex atmospheres was

the observation by Galileo of the colors in the atmosphere of Jupiter. With the

development of better telescopes, similar observations were made of the other outer

planets. Development of spectroscopic techniques and of equipment that could be

attached to telescopes led to the detection and identification of the species that we

now know comprise the atmospheres. The atmosphere of Jupiter, for example,

contains about 88% molecular hydrogen (H2) and 11% helium (He), along with

smaller amounts of methane (CH4), ammonia (NH3), simple hydrocarbons and

hydrogen cyanide (HCN). Many other compounds such as more complex

hydrocarbons and nitriles (CN containing compounds) and materials that may be very

complex or even polymeric must also be present. The latter of these species are

evidenced by the presence of aerosols in the atmospheres of Jupiter and the outer

planets. Reviews of our knowledge regarding the atmospheres of the outer planets

are given in Trafton (1981) and Hunten etal. (1984).

The presence of these molecules and aerosols and the fact that some of them are

colored imply that active chemistry of atmospheric species is either occurring now

and/or has occurred in the past (Scattergood and Owen, 1977). Condensation of

simple compounds such as CH 4 and NH 3 from the solar nebula result in clear or white

ices and not colored aerosols. Also, compounds such as acetylene (02H2) and HCN

are not expected from simple thermodynamic condensation of species expected to

have been present in the primordial solar nebula. How were these species formed?

Can modeling of the chemical processes in planetary atmospheres be used to predict

the compositions of the atmospheres that we cannot presently determine from the
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earth but may be able to analyze by probes sent to the outer planets in the future? To

help answer questions like these, laboratory research efforts in the areas of hot atom

induced chemistry and synthesis of organic compounds by electrical discharge in

planetary atmospheres were carried out as described below.
The discoveries of a thick atmosphere on Saturn's satellite Titan and the tenuous

atmosphere on Neptune's satellite Triton indicate that studies of the chemical

evolution of the outer planets is no longer limited to the atmospheres of the giant

planets. Titan has an atmosphere that is more extended than that of the Earth and, like

that of the Earth, is primarily composed of nitrogen (N2). Many simple organic

compounds including CH 4, C2H 2, and HCN are present in the atmosphere along with

at least three haze layers, one of which is responsible for the satellite's yellow-orange

color. Little is know about the chemical nature of the hazes, but their presence

indicates the occurrence of active chemistry, at least in the past.

The presence of such an extensive atmosphere on Titan raises the question

about the sources for atmospheres on solar system bodies, in particular that of Titan.

Such a small satellite, even with a surface temperature of only 94 K, would not likely

capture such a thick atmosphere (Owen, 1982). Two basic hypotheses have been

proposed to explain Titan's present atmosphere. One suggests that the atmosphere is

original and the initial NH 3 was converted into N 2 by photolysis (Atreya et aL, 1978).

The other suggests that the N2 and other volatile gases were trapped in water

clathrates and then released later to form the present atmosphere (Lunine et aL,

1989). Neither of these models can fully account for all of the details known about

Titan's current atmosphere. Another possibility is that Titan did accrete an atmosphere

containing NH 3 which was subsequently converted into N2 by processing of the

atmosphere in plasmas associated with infalling objects such as meteors. Much more

work needs to be done to understand how the atmosphere was formed and evolved.

To help answer some of the questions raised above, laboratory based

investigations of three areas were done: 1) Organic chemistry induced by kinetically

'hot' hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia

cirrus clouds; 2) The conversion of NH 3 into N2 by plasmas associated with entry of

meteors and other objects into the atmosphere of early Titan; and 3) The synthesis of

simple hydrocarbons and HCN by lightning in mixtures containing N2, CH 4 and NH 3

representing the atmospheres of Titan and the outer planets. The results of each of

these studies have been published in the scientific literature (see the list of
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publications included at the end of this report) and are summarized below.

Hot Hydrogen Atom Chemistry on Jupiter

The occurrence of active chemistry in the atmospheres of the outer planets has

been evidenced by observations from ground-based telescopes and by spacecraft.

Further support for the occurrence of chemical processes (past or present) comes from

models of the condensation of planetary bodies from the primordial nebula, which

predict that only simple molecules such as H2, He, CH 4, NH 3, etc. should be expected

to be present in planetary atmospheres in observable quantities. Many sources of

energy useful in initiating chemical reactions are available to planetary atmospheres.

Such sources include ultraviolet light (_.<2500A), electrical discharges, particle

bombardment, and heat. Of these, UV light is considered to be the most important

because of its higher energy fluences. Observations and computational modeling

show that the atmosphere of Jupiter (and probably of the other outer planets) to be

chemically stratified so that solar radiation of different wavelengths will penetrate to

different levels in the atmosphere. This leads to photolysis of CH 4, NH 3, phosphine

(PH3) and hydrogen sulfide (H2S) at different altitudes. In the upper atmosphere direct

photolysis of CH 4 produces the hydrocarbon products which have been observed.

Ammonia, however, is frozen out lower in the atmosphere and is not available for

reaction with CH 4 or its photoproducts. Another mechanism must be responsible for

the formation of organic nitrogen species (e.g., HCN).

In the region of the NH 3 cirrus clouds, direct photolysis of CH 4 is unlikely due to

the shielding by CH 4 in the overlying atmosphere. Another way of making the CH 3

radicals necessary to react with the NH 2 radicals formed from photolysis of NH 3 is

abstraction of H from CH 4 by kinetically 'hot' hydrogen atoms, also formed from

photolysis of NH 3. The CH 3 and NH 2 radicals can then react with each other and

other species to form HCN and more complex CN compounds. The major criticisms of

this scenario are that the efficiency of the abstraction reaction is too low and that the

hot hydrogen atoms are too rapidly thermalized by molecular hydrogen and other

gases for hot hydrogen atoms to be effective in initiating chemistry.

To investigate these problems, a number of experiments were carried out in

which NH 3 (at a pressure of 4 torr) was photolysed with isotopically labeled methane
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(CD4) in the presence of varying amounts of H2 (pressuresfrom 0 to 800 torr). The
deuterated form of methane was used to allow monitoring of the reaction. The overall

abstraction of D from CD 4 was measured by the production of HD, Le.,

H* + CD 4 --> CD 3 + HD.

Monitoring of the changes in NH 3 and, consequently, H* were done by measuring the

decrease in the amount of NH 3 during the photolysis. The measurement accuracy

was found to be +10%. After the photolysis, the gas mixtures were each divided into 4

equal aliquots and the HD (and H2 that was either added or present with the HD) were

separated from the reactants and other products. The amounts of HD produced were

measured using a stable isotope mass spectrometer specifically designed to measure

hydrogen. From these data and the amounts of NH 3 lost, the efficiencies of the

abstraction reaction and of the thermalization of H* were determined.

Briefly, the results of the experiments showed that the thermalization of hot H* by

H2 was much less efficient than expected based upon simple elastic collision theory.

This is qualitatively indicated in Figure 1, which shows the yield of HD as a function of

the initial pressure of H2 in the mixture. From the figure, the yield of HD does not

decrease linearly with H 2 pressure, and is still significant even for pressures of H 2 as

high as 800 torr ([H2]/[NH3] = 200; the Jovian ratio is =500). From calculations using

probability theory of the expected versus experimental yields, a measure of the

thermalization of H* can be made. Our results show that about 10 to 11 collisions

between the hot hydrogen atoms and molecular hydrogen are required to reduce the

energy of the H* below that required for abstraction of D from CD 4. Classic theory

predicts total thermalization in just 3 collisions. Finally, from Figure 1 it can be seen

that even at high pressures of H 2, the production of HD (and abstraction of D from

CD4) still occurs. This suggests that if a significant amount of hot hydrogen atoms can

be made in Jupiter's cirrus cloud region, then chemistry induced by these atoms

should occur and that some of the CN compounds found there may be due to hot atom

chemistry. More detailed descriptions of this work have published in the scientific

literature (Aronowitz, et aL, 1981 [theory]; Aronowitz et aL, 1986 [experiments]).

Although not one of the original purposes of this project, a determination of the

effect of H2 on the quantum loss (_) of NH 3 photolyzed at 1849A was made. The

results are shown in Figure 2. The value of 0.28 for no hydrogen agrees with values

found in the literature. However, the important result relevant to chemistry of outer

planet atmospheres is that -_(NH3) = 0.02 is still significant even for [H2]/[NH3] = 200.
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Origin of N2 in Titan's Atmosphere

Titan is an unusual outer solar system satellite in that it has a substantial

atmosphere and that the atmosphere is dominated by molecular nitrogen. Based on

cosmochemical arguments, in particular that hydrogen was the major component of

the primordial solar nebula and that the stable low temperature forms of carbon and

nitrogen are CH 4 and NH 3, respectively, Titan should have accreted an atmosphere of

mostly H2, CH 4, and NH 3. Water, the stable form of oxygen, would have frozen out

onto the surface or in the interior. Most of the H2 would have escaped over time due to

the satellite's low gravity, leaving an atmosphere consisting of CH 4 and NH 3 with

smaller amounts of other gases, argon for example (Owen, 1982). As mentioned

above, however, Titan's atmosphere is made up of CH 4 and N2 (Hunten et aL, 1984).

Recently an argument was made on kinetic grounds that the form of nitrogen in

the solar nebula had been N2 and not NH 3 (Prinn and Fegley, 1981). Also, the form of

carbon would have been carbon monoxide (CO) and not CH 4. If this were the case,

then the original atmosphere would have consisted of N2 and CO, not N2 and CH 4 as

found today. Hence, Titan's atmosphere presents a dilemma in that it contains species

consistent with equilibration of the nebula at both high (for N2) and low (for CH4)

temperatures.

Assuming that the kinetic arguments were valid, how would such an atmosphere

have been acquired? The present surface temperature of 94 K is not low enough for

direct condensation of N2 and CO. To solve this problem, water-ice clathrates

containing large amounts of these species have been postulated (Lunine et aL, 1989).

However, there are difficulties with this model. The maximum vapor pressure of N2

above a clathrate surface at 94 K is only 1.5 torr (Lunine and Stevenson, 1985), much

less than the 1.5 bar present today. Also, if enough N2 were incorporated in the

clathrate to give the present N2 abundance, then there should be a large amount of

CO and an even larger amount of CH 4 in the atmosphere as CH 4 is more readily

incorporated into water-ice clathrates than are CO and N 2.

Some recent studies suggest that Titan may have formed in the outer portion of

the nebula surrounding Saturn (Lunine etal., 1989). In this nebula, the form of

nitrogen might have been NH 3, which would have been directly accreted into Titan's
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atmosphere resulting in an atmosphere of CH4 and NH3. If this were the case, then

how was the present N2 formed? One hypothesis is that the original NH3 was

photolysed by solar UV light over time to produce the N2 found there today. However,

during the early history of the solar system, the solar nebula may have been to dense

to permit penetration of UV light to the region of Saturn, and the surface temperature of

Titan may have been too low for much NH3 to have existed in the (upper) atmosphere.

Also, there may have been hazes in the upper atmosphere, like there are today, that

could have blocked the UV light necessary to photolyze the NH3.

During the early stages of Titan's history, the atmosphere would have been
bombarded by meteors and other nebular debris. Plasmas, generated during

passage of these objects through the atmosphere, are known to be efficient initiators of

chemical processes. Also, these objects would have reached the lower part of Titan's

atmosphere where NH3 would have been most abundant. Hence, bombardment of
the atmosphere by meteors and other nebular debris might have been an effective

way of converting the original NH3 into the present N2.
To evaluate this scenario, a number of experiments were done in which mixtures

of CH4 and NH3 were subjected to laser-induced plasmas (LIP), simulating the
plasmas associated with infalling meteors in Titan's early atmosphere. These plasmas

were generated by a 10 hz pulsed Nd-YAG(X = 1.06 I_m)laser with about 0.2J per

pulse. After irradiation, the amounts of N2 and H2 (and some simple hydrocarbons)

produced were measured by gas chromatography using a thermal conductivity

detector and their yields as a function of the energy absorbed by the gas were

determined. The yields of N2 as a function of the initial concentration of NH3 in the
mixture are shown in Figure 3. Also shown are the yields calculated from a simple

high temperature quenched equilibrium model for three 'freeze-out' temperatures.

Using the yield for X(NH3) = 0.1, the results suggest that meteor impacts could

have generated as much as 12 bar of N 2, more than enough to account for the N 2

present today. This conclusion was also reached independently from a computational

model of shock-initiated chemistry in the atmosphere (Jones and Lewis, 1987).

However, the assumptions about the total energy delivered to the atmosphere by

infalling meteors and the effects of plasma made H2 accumulated in Titan's

atmosphere may not be valid, possibly resulting in much lower yields of N 2 from this

process. A discussion of these effects and a more detailed presentation of this model

and the experiments have been published in the open literature (McKay et aL, 1988).
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Production of Organic Compounds in Plasmas

The chemistry in planetary atmospheres that is induced by processes associated

with high-temperature plasmas is of broad interest because such processes may

explain many of the chemical species observed in these atmospheres. There are at

least two important phenomena that are known to generate plasmas (and shocks) in

planetary atmospheres: lightning and meteor impacts. For both phenomena, rapid

heating of atmospheric gases leads to the formation of a high-temperature plasma

which emits radiation and produces shock waves that propagate through the

surrounding atmosphere. These processes initiate chemical reactions that can

transform simple gases into more complex compounds. These compounds may, in

part, account for the variety of gases and aerosols known or believed to exist in the

atmospheres of the outer planets and of the satellites Titan and Triton.

In order to study the production of organic compounds in plasmas and shocks in

a primitive atmosphere, a series of experiments were done in which various mixtures

of N2, CH 4 and H2, modeling the atmosphere of Titan, were exposed to discrete

sparks, laser-induced plasmas, and ultraviolet light. For the spark experiments, an

apparatus capable of producing discrete 20 KV sparks across a 4.5 cm gap was used.

The energy density of these sparks was about 104 J/m, which is within an order of

magnitude of that of terrestrial lightning. For the laser experiments, a Nd-YAG laser

(_,= 1.06 Ilm) producing a 10 Hz pulsed beam containing about 0.2 J per pulse was

used. The photolysis experiments were carried out using the light produced by the

sparks but the test mixture was contained in a cell with MgF 2 windows to isolate the

gases from the shock but not the ultraviolet light.

As was expected for high-temperature plasmas, the molecules produced in

highest yield in both the spark and laser experiments were HCN and C2H 2, followed

by ethane (02H6), ethylene (C2H4), and propane (C3H8) in order of decreasing yield.

When compared to the yields predicted by a simple high-temperature quenched

thermodynamic equilibrium model, those for HCN and C2H 2 are in fair agreement, as

shown in Figure 4. However, the agreements for C2H 6 and the other hydrocarbons

were poor and became increasingly worse with product complexity (carbon number).

This indicates that a more comprehensive theory is needed, as processes other than
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equilibrium cooling from a high temperature gas must be occurring.

Our experiments suggested that perhaps photolysis by ultraviolet light emitted

from the plasma is an important process in the synthesis. To test this hypothesis,

experiments were done in which the mixtures were exposed to the light from the spark

but not to the shock or high-temperature plasma. As expected from known results of

the UV photolysis of CH 4, C2H 6 was the major product, followed by C2H 2, C2H 4, and

C3H 8. After correction for the diminution of the light from the spark due to system

geometry and absorption by the cell windows, the photolysis yields can be compared

to the spark yields, as shown in Figure 5. From the figure, it can be seen that the

production of C2H 6 and C2H 4 may be almost entirely accounted for by photolysis.

C3H 8 may also be made primarily by photolysis as the yield predicted by the

quenched equilibrium model is more than 5 orders of magnitude smaller than that

observed in the experiments. Hence, the results of these experiments demonstrate that

the thermodynamic equilibrium theory does not adequately model chemistry in

lightning and plasmas associated with meteor impacts and that at least photolysis

must be included. A detailed description of the results of these experiments and their

implications to chemistry in planetary atmospheres has been published in the journal

Icarus (Scattergood et al., 1989).
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EXPERIMENTAL vs. THEORETICAL YIELDS PREDICTED

FROM LIGHTNING IN A MODEL TITAN ATMOSPHERE

MIXTURE: 96.8% N2, 3.0% CH4, 0.2% H2

MODEL: HIGH TEMPERATURE SHOCK (2000-3000 K)

O3

-1
O
(2)

O

E

..J
UJ

>-

1018

1016

1014

1012

1010

1 0 8

I I I

HCN C2H2 C2H4

_i!!!i_iiiiii!ii!

!ii!iiiiiiiiii!ii
iii!iiiii_iiiii
i!i!i_!i!_ii!i!i!
:.:.:.:.:.:.:.:.:.

,.....,...*.......
................-.
..-.-...-.-.-.. -.

::::::::::::::::::
:,:,:.:,:.:.:.:.:.

lllllll

C2H6

EXPERIMENT*

MODEL

I

C3H8

*: Values are averages of all spark experiments.

Figure 4



PRODUCTION OF HCN AND HYDROCARBONS BY

IMPORTANCE OF PHOTOLYSIS TO THE SPARK

MIXTURE: 96.8% N2, 3.0% CH4, 0.2% H2

PRESSURE: 760 torr.

LIGHTNING:

PROCESS
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Values shown are averages of all experiments.

* Spark includes shock + photolysis + other processes.

** Photolysis was accomplished using the light emitted by the sparks.

Figure 5


